7 research outputs found

    The International Large Detector: Letter of Intent

    Get PDF
    163 pages, 91 figuresThe International Large Detector (ILD) is a concept for a detector at the International Linear Collider, ILC. The ILC will collide electrons and positrons at energies of initially 500 GeV, upgradeable to 1 TeV. The ILC has an ambitious physics program, which will extend and complement that of the Large Hadron Collider (LHC). A hallmark of physics at the ILC is precision. The clean initial state and the comparatively benign environment of a lepton collider are ideally suited to high precision measurements. To take full advantage of the physics potential of ILC places great demands on the detector performance. The design of ILD is driven by these requirements. Excellent calorimetry and tracking are combined to obtain the best possible overall event reconstruction, including the capability to reconstruct individual particles within jets for particle ow calorimetry. This requires excellent spatial resolution for all detector systems. A highly granular calorimeter system is combined with a central tracker which stresses redundancy and efficiency. In addition, efficient reconstruction of secondary vertices and excellent momentum resolution for charged particles are essential for an ILC detector. The interaction region of the ILC is designed to host two detectors, which can be moved into the beam position with a push-pull scheme. The mechanical design of ILD and the overall integration of subdetectors takes these operational conditions into account

    First test of a power-pulsed electronics system on a GRPC detector in a 3-Tesla magnetic field

    Full text link
    An important technological step towards the realization of an ultra-granular hadronic calorimeter to be used in the future International Linear Collider (ILC) experiments has been made. A 33X50 cm2 GRPC detector equipped with a power-pulsed electronics board offering a 1cm2 lateral segmentation was successfully tested in a 3-Tesla magnet operating at the H2 beam line of the CERN SPS. An important reduction of power consumption with no deterioration of the detector performance is obtained when the power-pulsing mode is applied. This important result shows that ultra-granular calorimeters for ILC experiments are not only an attractive but also a realistic option.Comment: 10 pages, 9 figure

    Tests of a particle flow algorithm with CALICE test beam data

    No full text
    The studies presented in this paper provide a first experimental test of the Particle Flow Algorithm (PFA) concept using data recorded in high granularity calorimeters. Pairs of overlaid pion showers from CALICE 2007 test beam data are reconstructed by the PandoraPFA program developed to implement PFA for a future lepton collider. Recovery of a neutral hadron's energy in the vicinity of a charged hadron is studied. The impact of the two overlapping hadron showers on energy resolution is investigated. The dependence of the confusion error on the distance between a 10 GeV neutral hadron and a charged pion is derived for pion energies of 10 and 30 GeV which are representative of a 100 GeV jet. The comparison of these test beam data results with Monte Carlo simulation is done for various hadron shower models within the GEANT4 framework. The results for simulated particles and for beam data are in good agreement thereby providing support for previous simulation studies of the power of Particle Flow Calorimetry at a future lepton collider
    corecore